Spanning Tree Protocol
Exercises

Mario Baldi
Politecnico di Torino
(Technical University of Turin)
http://www.mario-baldi.net
Copyright Notice

This set of transparencies, hereinafter referred to as slides, is protected by copyright laws and provisions of International Treaties. The title and copyright regarding the slides (including, but not limited to, each and every image, photography, animation, video, audio, music and text) are property of the authors specified on page 1.

The slides may be reproduced and used freely by research institutes, schools and Universities for non-profit, institutional purposes. In such cases, no authorization is requested.

Any total or partial use or reproduction (including, but not limited to, reproduction on magnetic media, computer networks, and printed reproduction) is forbidden, unless explicitly authorized by the authors by means of written license.

Information included in these slides is deemed as accurate at the date of publication. Such information is supplied for merely educational purposes and may not be used in designing systems, products, networks, etc. In any case, these slides are subject to changes without any previous notice. The authors do not assume any responsibility for the contents of these slides (including, but not limited to, accuracy, completeness, enforceability, updated-ness of information hereinafter provided).

In any case, accordance with information hereinafter included must not be declared.

In any case, this copyright notice must never be removed and must be reported even in partial uses.
Legenda and Conventions

Device identifier

Port number 1

Other ports are sequentially numbered clockwise. E.g., this is port 2

Link

Switch

Hub

Router

Server

Station
What is the outcome of the spanning tree protocol on this network?

What capacity should be used for the links?
What is the outcome of the spanning tree protocol on this network assuming that each bridge S_{xx} uses as part of its bridge identifier the default bridge priority and the MAC address $03-0a-00-2b-3c-xx$?

What capacity should be used for the links?

How should the configuration be modified to optimize the resulting active topology?

What is the consequence of disabling the STP on S_{01}?
What is the outcome of the spanning tree protocol on this network assuming that each bridge S\textit{xx} uses as part of its bridge identifier the default bridge priority and the MAC address 03-0a-00-2b-3c-\textit{xx}?

What capacity should be used for the links?

How should the configuration be modified to optimize the resulting active topology?
What is the outcome of the spanning tree protocol on this network assuming that each bridge S_{xx} uses as part of its bridge identifier the default bridge priority and the MAC address $03-0a-00-2b-3c-xx$?

What capacity should be used for the links?
How should the configuration be modified to optimize the resulting active topology?
What is the outcome of the spanning tree protocol on this network assuming that each bridge S_{xx} uses as part of its bridge identifier the default bridge priority and the MAC address 03-0a-00-2b-3c-_{xx}?

What capacity should be used for the links?

How should the configuration be modified to optimize the resulting active topology?
What is the outcome of the spanning tree protocol on this network assuming that each bridge S_{xx} uses as part of its bridge identifier the default bridge priority and the MAC address $03-0a-00-2b-3c-xx$?

What capacity should be used for the links?

How should the configuration be modified to optimize the resulting active topology?
What is the outcome of the rapid spanning tree protocol on this network assuming that each bridge S_{xx} uses as part of its bridge identifier the default bridge priority and the MAC address 03-0a-00-2b-3c-xx?

What capacity should be used for the links?

How should the configuration be modified to optimize the resulting active topology?
What is the outcome of the rapid spanning tree protocol on this network assuming that each bridge S_{xx} uses as part of its bridge identifier the default bridge priority and the MAC address 03-0a-00-2b-3c-xx?

What capacity should be used for the links?

How should the configuration be modified to optimize the resulting active topology?
What is the outcome of the rapid spanning tree protocol on this network assuming that each bridge S\text{xx} uses as part of its bridge identifier the default bridge priority and the MAC address 03-0a-00-2b-3c-\text{xx}?

What capacity should be used for the links?
How should the configuration be modified to optimize the resulting active topology?
What is the outcome of the spanning tree protocol on this network assuming that:

- stations of different colors belong to different VLANs
- each bridge S_{xx} uses as part of its bridge identifier the default bridge priority and the MAC address $03-0a-00-2b-3c-xx$?

How can the configuration be optimized?
What is the outcome of the spanning tree protocol on this network assuming that:

- stations of different colors belong to different VLANs
- each bridge S^{xx} uses as part of its bridge identifier the default bridge priority and the MAC address 03-0a-00-2b-3c-^{xx}?

How can the configuration be optimized?